Argon plasma treatment techniques on steel and effects on diamond-like carbon structure and delamination

نویسندگان

  • B. J. Jones
  • L. Anguilano
  • J. J. Ojeda
چکیده

We demonstrate alteration in diamond-like carbon (DLC) film structure, chemistry and adhesion on steel, related to variation in the argon plasma pretreatment stage of plasma enhanced chemical vapour deposition. We relate these changes to the alteration in substrate structure, crystallinity and chemistry due to application of an argon plasma process with negative self bias up to 600 V. Adhesion of the DLC film to the substrate was assessed by examination of the spallated fraction of the film following controlled deformation. Films with no pretreatment step immediately delaminated. At 300 V pretreatment, the spallated fraction is 8.2%, reducing to 1.2% at 450 V and 0.02% at 600V. For bias voltages below 450V the adhesion enhancement is explained by a reduction in carbon contamination on the substrate surface, from 59at.% with no treatment to 26at.% at 450V, concurrently with a decrease in the surface roughness, Rq, from 31.5nm to 18.9nm. With a pretreatment bias voltage of 600V a nanocrystalline, nanostructured surface is formed, related to removal of chromium and relaxation of stress; X-ray diffraction indicates this phase is incipient at 450V. In addition to improving film adhesion, the nanotexturing of the substrate prior to film deposition results in a DLC film that shows an increase in sp/sp ratio from 1.2 to 1.5, a reduction in surface roughness from 31nm to 21nm, and DLC nodular asperities with reduced diameter and increased uniformity of size and arrangement. These findings are consistent with the substrate alterations due to the plasma pretreatment resulting in limitation of surface diffusion in the growth process. This suggests that in addition to deposition phase processes, the parameters of the pretreatment process need to be considered when designing diamond-like carbon coatings. Prime Novelty: We elucidate the mechanisms behind the enhancement of diamond-like carbon film adhesion with increase in pretreatment bias voltage, and demonstrate the effect on the final film structure of alterations in the pretreatment process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasma enhanced chemical vapor deposition of deuterated diamond like carbon films for photocathode application

The influence of diamond like carbon films properties on quantum efficiency of prepared transmission photocathodes has been investigated. DLC films were deposited on silicon substrate and stainless steel mesh by PECVD using methane, argon and hydrogen or deuterium gas mixtures. Photocathodes prepared with deuterated DLC film have higher quantum efficiency than photocathodes prepared with hydrog...

متن کامل

Tribological Behaviour of Fe-Al Intermetallic Compound Coated Carbon Tool Steel

The use of Fe-Al intermetallic compound coatings has been investigated in order to improve the tribological behaviour of carbon tool steel. The coatings were formed by a pack cementation process and subsequently diffusion annealing at 900˚C in an argon controlled atmosphere. The optimum diffusion time was selected on the basis of optimum thickness and tribological behaviour. The microstructure...

متن کامل

Effect of Catalyst on the Growth of Diamond-like Carbon by HFCVD

Diamond like carbon (DLC) film was grown by hot filament chemical vapor deposition (HFCVD)technique. In the present work, we investigated the quality of the DLC films groew on the substratesthat were coated with various metal nanocatalysts (Au and Ni). A combination of CH4/Ar/H2 rendersthe growth of carbon nanostructures technique (diamond like carbon). The utilized samples werecharacterized by...

متن کامل

Tribological Behaviour of Fe-Al Intermetallic Compound Coated Carbon Tool Steel

The use of Fe-Al intermetallic compound coatings has been investigated in order to improve the tribological behaviour of carbon tool steel. The coatings were formed by a pack cementation process and subsequently diffusion annealing at 900˚C in an argon controlled atmosphere. The optimum diffusion time was selected on the basis of optimum thickness and tribological behaviour.&#10The microstructu...

متن کامل

حذف مونوکسیدکربن به روش پلاسمای سرد

Abstract Background and aims:Nowadays, the non-thermal plasma is considered as a successful new technology with high efficiency in the air pollution control and is in the focal attention of the researchers. Various types of atmospheric pollutants adversely influence on the human health and the environment regionally and globally. Carbon monoxide has been introduced as a critical pollutant wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015